1. Home
  2. gl芒ce

Effect of carboxymethyl cellulose on the properties of multi-wall

$ 18.00

4.5 (521) In stock

Thetraditional neutral ink is mostly made of acrylic resin as thickener, and does not have the ability to conduct electricity. Therefore, this study explored the mixing of carboxymethyl cellulose (CMC) and multi-wall carbon nanotubes (MWCNT) to make the prepared ink conductive after writing. CMC-MWCNT conductive ink was prepared by ultrasonic and written on paper with a neutral pen. The stability, rheological property, writing property, corrosion resistance, electrical conductivity, and folding stability of the prepared conductive ink were analyzed, and compared with Chenguang neutral ink (CG) on the market. When the amount of CMC is 0.3wt% and 0.6wt% respectively, the Zeta potential, yield stress and yield viscosity of conductive ink are all low, ink leakage occurred during writing. And the line resistance of writing is small, but the resistance increases a lot after 100 times of folding, increasing by 32.3% and 17.9%, respectively. When CMC is added at 0.9wt%, 1.2wt% and 1.5wt%, respectively, the absolute value of Zeta potential of conductive ink is greater than 30 mV, and the system is in a stable state. The yield stress and viscosity increased with the increase of CMC. When CMC content is 0.9wt% and 1.2wt%, respectively, the conductive ink writing is normal, the resistance of the writing lines are 14.9 kΩ/cm, 15.6 kΩ/cm, and the resistance increases by 8.7% and 7.8% after 100 times of folding. The conductive ink of 1.5wt% CMC content is broken when writing, the resistance after writing is 28.3 kΩ/cm, and the resistance increases by 9.5% after 100 times of folding. Compared with CG, conductive ink of 1.2wt% CMC has similar stable performance, rheological performance, and writing performance. In addition, conductive ink of 1.2wt% CMC has electrical conductivity and can light up LED lights.

Biodegradable carboxymethyl cellulose based material for sustainable packaging application

a) Scanning electron microscope (SEM) image of pure carboxymethyl

Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes - ScienceDirect

Dispersion characterizations and adhesion properties of epoxy composites reinforced by carboxymethyl cellulose surface treated carbon nanotubes - ScienceDirect

Curing behavior of sodium carboxymethyl cellulose/epoxy/MWCNT nanocomposites - RSC Advances (RSC Publishing) DOI:10.1039/D2RA01943D

Polymers, Free Full-Text

Fabrication of highly porous MOF/cellulose beads for sustained degradation of dye

Synthesis and study of mechanical and fire retardant properties of (carboxymethyl cellulose -g-polyacrylonitrile)/montmorillonite biodegradable nanocomposite

High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose

Nanomaterials, Free Full-Text

Carboxymethyl Cellulose FVH6A-2

Polymers, Free Full-Text